Riemannian stochastic variance reduced gradient
نویسندگان
چکیده
Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large but finite number of loss functions. In this paper, we propose a novel Riemannian extension of the Euclidean stochastic variance reduced gradient algorithm (R-SVRG) to a manifold search space. The key challenges of averaging, adding, and subtracting multiple gradients are addressed with retraction and vector transport. We present a global convergence analysis of the proposed algorithm with a decay step size and a local convergence rate analysis under a fixed step size under some natural assumptions. The proposed algorithm is applied to problems on the Grassmann manifold, such as principal component analysis, low-rank matrix completion, and computation of the Karcher mean of subspaces, and outperforms the standard Riemannian stochastic gradient descent algorithm in each case.
منابع مشابه
A Fast Algorithm for Matrix Eigen-decompositionn
We propose a fast stochastic Riemannian gradient eigensolver for a real and symmetric matrix, and prove its local, eigengap-dependent and linear convergence. The fast convergence is brought by deploying the variance reduction technique which was originally developed for the Euclidean strongly convex problems. In this paper, this technique is generalized to Riemannian manifolds for solving the g...
متن کاملStochastic Variance Reduced Riemannian Eigensolver
We study the stochastic Riemannian gradient algorithm for matrix eigendecomposition. The state-of-the-art stochastic Riemannian algorithm requires the learning rate to decay to zero and thus suffers from slow convergence and suboptimal solutions. In this paper, we address this issue by deploying the variance reduction (VR) technique of stochastic gradient descent (SGD). The technique was origin...
متن کاملRiemannian stochastic variance reduced gradient on Grassmann manifold
Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite, number of loss functions. In this paper, we propose a novel Riemannian extension of the Euclidean stochastic variance reduced gradient algorithm (R-SVRG) to a compact manifold search space. To this end, we show the developments on the Grassmann manifold. The key challenges of...
متن کاملRiemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis
Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite number of loss functions. The present paper proposes a Riemannian stochastic quasi-Newton algorithm with variance reduction (R-SQN-VR). The key challenges of averaging, adding, and subtracting multiple gradients are addressed with notions of retraction and vector transport. We...
متن کاملRiemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
We study optimization of finite sums of geodesically smooth functions on Riemannian manifolds. Although variance reduction techniques for optimizing finite-sums have witnessed tremendous attention in the recent years, existing work is limited to vector space problems. We introduce Riemannian SVRG (RSVRG), a new variance reduced Riemannian optimization method. We analyze RSVRG for both geodesica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.05594 شماره
صفحات -
تاریخ انتشار 2017